Nuclear Quadrupole Resonances of 2,4,6-Trichlorobenzonitrile

Hisao Negita, Kaoru Shibata, and Tsuneo Kubo

Department of Chemistry, Faculty of Science, Hiroshima University, Hiroshima 730

(Received August 13, 1974)

2,4,6-Trichlorobenzonitrile was examined by means of the nuclear quadrupole resonances (NQR) resulting from 14 N and 35 Cl nuclei. One 14 N resonance line (the higher line of the pair) and three 35 Cl resonance lines were observed. The Zeeman effect on a single crystal was studied in an attempt to predict the lower 14 N line. Thus, $|e^2Qq|=3936.7$ kHz and $\eta=0.1298$ were calculated for the nitrogen atom; the frequency of the lower line was estimated at 2824.8 kHz. On the other hand, $(\eta=0.130; |e^2Qq|=71.209$ MHz), (0.128; 72.594), and (0.116; 73.720) were determined for the chlorine atoms in the order of increasing frequencies by studying the Zeeman effect of 35 Cl NQR on the single crystal.

Short intermolecular distances between nitrogen and halogen atoms have been known from structural studies of X-ray diffraction in the cyanogen halides and p-halobenzonitriles.^{1,2)} These results have been interpreted as indicating donor-acceptor interaction between adjacent molecules. The crystal structure of 2,4,6-trichlorobenzonitrile was recently determined to be as is shown in Fig. 1,3) where the intramolecular bonds are represented by the solid lines, while the intermolecular bonds are represented by the broken lines. The shortest distance between the nitrogen and chlorine atoms in this crystal is 3.22 Å, which is shorter by 0.08 Å than the sum of their van der Waals radii.

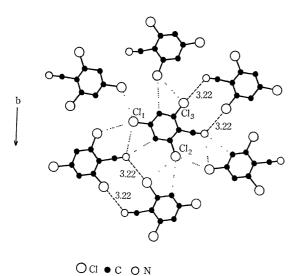


Fig. 1. The projection to the layer of 2,4,6-trichlorobenzonitrile. (Space group $P2_1/c$)

Therefore, there should be a weak interaction between the cyanide groups and *ortho* chlorine atoms, both of which serve to form the dimer. In this respect it seemed that it would be interesting to examine and discuss the chemical bonding in this crystal.

Experimental

The ¹⁴N NQR spectrum of 2,4,6-trichlorobenzonitrile was obtained at 77 K by the use of a frequency-modulated spectrometer described previously,⁴⁾ whereas the ³⁵Cl NQR spectra of this compound were obtained by the use of a superregenerative spectrometer at 290 K. The resonance frequencies were measured by means of two kinds of heterodyne-type frequency meters, whose frequencies were checked

by means of a frequency counter, TR-5578, of the Takeda Riken Co. The Zeeman field was supplied by a Helmholz coil described previously.^{5,6)}

2,4,6-Trichlorobenzonitrile was prepared from 2,4,6-trichloroaniline via 2,4,6-trichloroiodobenzene. This compound was identified by means of its infrared spectrum, its mass spectrum, and its melting point. About a 10-g portion of the sample was used, and a single crystal, 15 mm in diameter and 35 mm in length, was prepared by the Bridgman-Stockbarger method.

Results and Discussion

Our sample of 2,4,6-trichlorobenzonitrile revealed one weak ¹⁴N resonance line and three fairly strong ³⁵Cl resonance lines.

 ^{14}N Resonance Line. Generally a pair of ^{14}N NQR frequencies, $\nu_{\rm I}$ and $\nu_{\rm II}$, are observed as follows:

$$v_{\rm I} = |e^2 Qq|(3-\eta)/4,$$

 $v_{\rm II} = |e^2 Qq|(3+\eta)/4,$ (1)

where $|e^2Qq|$ and η are the quadrupole coupling constant and the asymmetry parameter respectively. However, only one resonance line was observed at 3080.2 kHz; it was assigned to the higher line by observing the Zeeman shift. The frequency of the lower line was calculated from the shift of the higher line by applying the Zeeman field, using a single crystal in the same way as before. 6) Figure 2 shows the angular dependence of the Zeeman shift of the higher line when the sample is rotated about a given axis. The Zeeman field was applied along the Y-axis of the laboratory frame, and the resonance frequencies were measured at various rotating angles (Θ) about the X-axis for a constant rotating angle ($\Phi = 0^{\circ}$) about the Z-axis. The maximum frequency or shift was found for $\theta = 335^{\circ}$. Next, the frequencies were measured at various rotating angles (Φ) about the Z-axis for $\theta=335^{\circ}$. The shift was at its maximum at $\Phi=350^{\circ}$. Therefore, the procedures were repeated until a self-consistent maximum shift was obtained; the maximum frequency was determined to be 3083.4 kHz. Under this condition, the perturbed resonance frequency is at its maximum and expressed as $3083.4 = K(3+\eta) + D^2/(2\eta K)$, where K is $|e^2Qq|/4$ and D² is 807.8 kHz^{2.6}) On the other hand, the higher line in the absence of the Zeeman field is expressed by $3080.2 = K(3+\eta)$. Thus, the NQR parameters are calculated as $|e^2Qq| = 3936.7 \pm 7.0 \text{ kHz}$ and $\eta =$ 0.1298±0.0057. Substituting these values into Eq. 1, the frequency of the lower line is obtained as 2824.8±

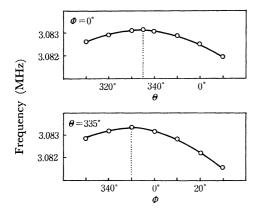


Fig. 2. The angular dependences of the Zeeman shifts.

10.6 kHz. The neighborhood of this frequency was carefully swept again, but, unfortunately, no resonance line was observed.

³⁵Cl Resonance Lines. The ³⁵Cl NQR frequency, ν , is obtained according to the following equation:

$$v = |e^2 Qq| (1 + \eta^2/3)^{1/2}/2. \tag{2}$$

The ³⁵Cl resonance lines of the sample were observed at 35.704, 36.395, and 36.941 MHz, as is shown in Table 1. These lines are labeled as v_1 , v_2 , and v_3 respectively. Then, referring to the crystal structure of the sample, these lines can be ascribed to the three kinds of chlorine atoms, Cl₁, Cl₂, and Cl₃, in one molecule. One of the zero-splitting patterns of the Zeeman effect on the resonance lines is shown in Fig. 3. For each of the resonance lines, v_1 , v_2 , and v_3 , two loci were obtained. The direction of the principal z-axis of the field gradient on the chlorine atom can be obtained from the zero-splitting pattern; it is assumed to be parallel to the direction of the C-Cl bond. The direction of the b-axis (C₂-axis) of the crystal can be found easily from the symmetrical distributions of the z-axis. The resonance line can be assigned by means of the angle between the b-axis and the z-axis. Thus, it

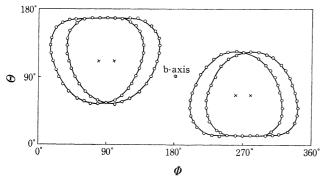


Fig. 3. Zero-splitting patterns of the Zeeman effect on the resonance line, v_1 .

is evident that v_1 , v_2 , and v_3 originate from the *para*-, *ortho*-, and *ortho*-chlorine atoms respectively. The last interacts weakly with the cyanide group of the adjacent molecule. The condition under which the zero-splitting occurs for the 35 Cl nucleus is given by:

$$\sin^2\theta = 2/(3 - \eta \cos^2\varphi),\tag{3}$$

where θ and φ are the polar and azimuthal angles for the Zeeman magnetic field with respect to the coordinates of the principal axes of the field gradient at the resonant nucleus. The asymmetry parameters were determined from Eq. (3) by the use of the least-squares method. If the crystal field effects are negligibly small, the quadrupole coupling constant and the double-bond character, f, can be determined from the following equation:⁸⁾

$$f = 2|e^2Qq|\eta/(3|e^2Qq_{\text{atom}}|),$$
 (4)

where $|e^2Qq_{\rm atom}|$ is 109.7 MHz.⁹⁾ These results are listed in Table 1. The f value of v_3 is rather smaller. This suggests that the *ortho*-chlorine atom assigned v_3 interacts with the cyanide group of the adjacent molecule, as is to be expected from the crystal structure of this compound.³⁾ The \angle CN···Cl angle is 122.4°, although generally the \angle CN···halogen angle is about 180°, as in the acetonitrile–bromine complex.¹⁰⁾ This seems to suggest that the σ -orbital of the nitrogen atom in this molecule has an s-character of less than 50%.

Table 1. NQR parameters in 2,4,6-trichlorobenzonitrile

		$\nu(\mathrm{MHz})$	$ e^2Qq (\mathrm{MHz})$	η(%)	f(%)
¹⁴ N		2.8248 ^a) 3.0802	3.9367a)	12.98a)	
⁸⁵ Cl	$\begin{cases} \operatorname{Cl}_1 \\ \operatorname{Cl}_2 \\ \operatorname{Cl}_3 \end{cases}$	35.704 36.395 36.941	71.209 72.594 73.720	13.0 12.8 11.6	5.63 5.65 5.19

a) Estimated by the experiment of Zeeman effects.

References

- 1) R. B. Heiart and G. B. Carpenter, Acta Crystallogr., 9, 889 (1956).
 - 2) E. O. Schlemper and D. Britton, ibid., 18, 419 (1965).
 - 3) V. B. Carter and D. Britton, ibid., **B28**, 945 (1972).
- 4) H. Negita, M. Hayashi, and T. Okada, J. Sci. Hiroshima Univ., Ser. A, 35, 85 (1971).
- 5) T. Okuda, H. Terao, O. Ege, and H. Negita, This Bulletin, **43**, 2398 (1970).
- 6) H. Negita, K. Shibata, and T. Kubo, *ibid.*, **46**, 110 (1973).
 - 7) C. Dean, Phys. Rev., 96, 1053 (1954).
 - 8) R. Bersohn, J. Chem. Phys., 22, 2078 (1954).
 - 9) V. Jaccarino and J. G. King, Phys. Rev., 83, 471 (1951).
- 10) K. M. Marstokk and K. O. Strømme, Acta Crystallogr., **B24**, 713 (1968).